Source parameters determined using borehole recordings

Kazutoshi Imanishi

(Geological Survey of Japan, AIST)

- Rupture velocities of microearthquakes determined using stopping phases
- 2. Earthquake source parameters determined by the SAFOD Pilot Hole vertical seismic array

Rupture velocities of microearthquakes determined using stopping phases

- K. Imanishi¹, M. Takeo², H. Ito¹, W. L. Ellsworth³,
- T. Matsuzawa², Y. Kuwahara¹, Y. Iio⁴, S. Horiuchi⁵, and Shiro Ohmi⁴
- 1. Geological Survey of Japan, AIST
- 2. ERI, University of Tokyo
- 3. U. S. Geological Survey
- 4. DPRI, Kyoto University
- 5. National Research Institute for Earth Science and Disaster Prevention

What kind of stopping phases are radiated?

Elliptical fault model (Savage, 1966)

Mutual relation of Hilbert transform pair

Application to data

Studied area

1. The are is characterized by persistent swarm activity.

(Most of earthquakes are less than M3.)

2. The Western Nagano earthquake (M=6.8) occurred in 1984.

10 kHz sampling

Three-component velocity transducer (L22-E)

Example

$M_w 1.4$

Other earthquakes

Estimation of source parameters

rupture velocity, source size, rupture aspect ratio

Rupture velocity vs seismic moment

Earthquakes are self-similar over a wide range of earthquake size and the dynamics of small and large earthquakes are similar.

Earthquake source parameters determined by the SAFOD Pilot Hole vertical seismic array

K. Imanishi¹, W. L. Ellsworth² and S. G. Prejean²

1. Geological Survey of Japan, AIST

2. U. S. Geological Survey

spectrum analysis

Corner frequency
Q value
Spectral level

Trade-off between f_c and Q.

Example

Source parameter estimations by fitting omega square model at each level.

There exists scatters in about only 1km difference of station locations.

Smoothness constraint on f_c, Q, and spectral level as a function of depth.

$$\left\|\frac{d \left\|g(m)\right\|^{2}}{D_{d}}\right\|^{2} + \left\|D_{1}m\right\|^{2} + \left\|D_{2}m\right\|^{2} + \left\|D_{2}m\right\|^{2} + \left\|D_{3}m\right\|^{2} = \min.$$

d :data

g(m) :omega square model

m :model parameter

D :smoothing operator

Result (Preliminary)

Vertical borehole array is a powerful tool to determine source parameters of microearthquakes.

